Assessing non-uniqueness: An algebraic approach

D. W. Vasco*
(September 16, 2002)

ABSTRACT

Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential
and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and com-
putational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear
inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

*Center for Computational Seismology, Berkeley Laboratory, University of California, Berkeley, CA 94720



INTRODUCTION

From a mathematical standpoint, geophysical inverse
problems are highly structured. The rich algebraic struc-
ture of linear inverse problems is well know and exten-
sively exploited. For example, ideas such as Hilbert
spaces, linear functionals, and spectral expansion have
proven fruitful in treating linear problems (Halmos 1957,
Luenberger 1969, Dorny 1980). For non-linear inverse
problems the associated mathematical structure has not
been extensively utilized. For the most part, non-linear
problems are simply linearized and methods from linear
inverse theory employed (Parker 1994). Alternatively,
purely stochastic techniques are frequently used in treat-
ing the inverse problem, and the inherent mathemati-
cal structure is effectively ignored (Tarantola 1987). In
truth, most non-linear geophysical inverse problems pos-
sess a high degree of mathematical structure which may
be used to some advantage in addressing important ques-
tions related to existence and uniqueness. In this paper I
discuss an algebraic framework in which both linear and
non-linear geophysical inverse problems may be treated.
I point to developments in computational algebra and nu-
merical algebraic geometry which are useful in attacking
geophysical inverse problems. The techniques outlined in
this paper are given a more extensive treatment in Vasco
(1999, 2000). Tt is still early in the development and im-
plementation of these methods. Thus, we might expect
substantial improvements in the current algorithms over
the coming years.

Inverse problems as algebraic equations:

As pointed out by Everett (1996), many of the differen-
tial equations governing geophysical phenomena take the
form of algebraic equations, that is polynomial equations,
when discretized. Specifically, the equations governing
geophysical phenomena are partial differential equations
with spatially varying coefficients (Menke and Abbott
1990). The spatially varying coefficients signify varia-
tions in physical properties within the Earth. Often the
equations governing the field variations are linear partial
differential equations. Another large class of equations
govern geophysical flows in the Earth, oceans, and atmo-
sphere. Such equations describe the evolution, in space
and time, of quantities such as the magnetic and electric
fields within the Earth, the displacement fields associ-
ated with earthquakes, fluid pressure variations in the
subsurface, the phase field of a wave traveling through
the Earth. A simple example is the Helmholtz equation

Viu 4 iwo(x)u = 0, (1)

where u(x,w) is a component of the electric or magnetic
field and o(x) is the electrical conductivity. Another well
known equation is the Eikonal equation,

VT -VT —0o(x)=0 (2)

where T'(x) is the spatially varying phase field of a wave
propagating through the Earth and o(x) is the square
of the slowness (Aki and Richards 1980). The equation
governing the evolution of hydraulic head H(x,w) in an
aquifer is a bit more involved. In that case there are
two properties governing the head distribution, the stor-
age coefficient and the hydraulic conductivity (de Marsily
1986). In the frequency domain, the governing equation
is

wS(x)H — K(x)V*H - VK(x)-VH=0, (3)

where S(x) denotes the storage coefficient and K (x) rep-
resents the hydraulic conductivity (Vasco and Karasaki
2001). All of the above equations, are composed of terms
in which a field quantity, or its derivative, multiplies a
material property coefficient or its own spatial derivative.

In the forward problem we fix the material properties
[such as o(x), S(x), and K(x) in the equations given
above] and solve for the field variables [u(x,w), T(x),
and H(x,w)]. This renders many equations, such as (1)
and (3), linear in the unknown field quantities, v and H
respectively. However, in the inverse problem we seek
both the material properties as well as the field vari-
ables within the Earth. In this setting, equations (1) and
(3) are non-linear because they contain product terms in
which field variables (or their derivatives) are multiplied
by material property coefficients (or their derivatives) [for
example, the product term VK (x)-VH in equation (3)].
Typically the field variables are consider to be implicit
functions of the material property distribution. In real-
ity, the situation is more symmetric, because if the field
is known throughout the Earth one may solve for the ma-
terial property distribution. When differential equations
such as these are discretized, the result is a system of
sparse algebraic equations. The study of such equations
is the relm of algebraic geometry, a very deep branch of
mathematics (Kendig 1977, Eisenbud 1995).

As an illustration, consider the discretization of the
Helmholtz equation (1). In two-dimensions we dis-
cretized equation (1) over a finite difference grid. The
result is the matrix equation
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and h is the distance between consecutive nodes (Everett
1996). The vector b contains the boundary values and
data, that is the observations on the boundary nodes.
Equation (4) represents a large, sparse system of alge-
braic equations in the unknown nodal field values, uy;,
and the nodal conductivities o,;.

As pointed out in Vasco (2000), discrete representa-
tions of functionals and integral equations, derived from
the governing differential equations, are also algebraic in
nature. Furthermore, squaring and differentiating alge-
braic equations results in algebraic equations. Thus, least
squares formulations and most regularization penalty
terms, which are quadratic forms, do not alter the al-
gebraic nature of the equations. Thus, large classes of
geophysical inverse problems may be represented by al-
gebraic equations. As we shall see, the algebraic ap-
proach provides a unified framework for treating both
linear and non-linear geophysical inverse problems. For
linear problems the calculations reduce to computational
linear algebra and matrix operations (Parker 1994). For
non-linear algebraic equations there are methods from
computational algebra which can be invoked (Cox et al.

1998, Sturmfels 2002).

The importance of being algebraic

What is the significance of the fact that many, if not
most, geophysical inverse problems take the form of a sys-
tem of algebraic equations? One consequence is that the
solution set of a system of algebraic equations, known as
an affine variety, can be quite different from the solution
set of a linear inverse problem. For example, the solution
set may intersect itself and the tangent space to the solu-
tion set may not be defined at points. Furthermore, the
solution set may consist of pieces of differing dimension,
such as a line intersecting a plane. Thus, the solution
set does not necessarily define a differentiable manifold
(Boothby 1975). Hence, concepts such as the dimension
of an affine variety require careful consideration.

More importantly, polynomial equations possess a rich
algebraic structure, similar in many respects to that asso-
ciated with linear equations, which may be used to exam-
ine fundamental properties of the solution set. Questions
related to the existence and uniqueness of a solution may
be addressed using methods from computational algebra
(Vasco 2000). Furthermore, techniques for finding all so-
lutions to the inverse problem follow from the definite al-
gebraic structure (Sturmfels 2002). In the Methodology
section that follows I discuss the fundamental algebraic
structure, the polynomial ideal, associated with a set of
algebraic equations. I also explore the analogy between
the treatment of linear equations and the treatment of
algebraic equations.

METHODOLOGY

Many of the questions we wish to answer are geometric
in nature. Does a solution to the inverse problem even
exist? What is the dimensionality of the solution set? If
the solution set is zero-dimensional, a collection of points,
how many solutions are there? In order to answer these
geometrical questions using a given set of algebraic equa-
tions one must relate the geometrical quantity, the affine
variety, to an algebraic structure. The relevant questions
are then framed in the language of algebra and compu-
tations are performed on the algebraic structure. This
approach is identical to that adopted in solving linear
inverse problems. In fact, linear equations are a special
case of algebraic equations, in which the degree of each
term in the equation is one. Thus, the concepts em-
ployed in solving linear problems have counterparts in
the treatment of arbitrary algebraic equations. Thus, I
will motivate the algebraic approach by first examining
a linear system of equations.

Motivation: The linear problem

Consider the linear system of equations:

11:&1~X—d1:0

12:32~X—d220

(7)
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where x is a vector of unknowns, the model parameters,
a; are the data kernels or representers (Parker 1994, p.
62), and d; are the observations. For the linear system
(7) there is some freedom in the form of the defining
equations. That is, we are not confined to a given set of
equations. In particular, 1t is permissible to multiply any
equation in (7) by an arbitrary scalar and add it to any
other equation. This freedom is essential in transforming
(7) into a useful form. For example, we may employ these
operations to change the matrix of data kernels

aig
as

M= ®)

into an upper triangular or diagonal form. From these
canonical forms it is possible to compute properties such
as the dimensionality of the solution set.

Let us summarize the most important intuitive ideas
behind the computations for linear inverse problems. If



a solution exists, the solution set forms a geometrical
object (a point, line, plane, or hyperplane) defined by the
vanishing of the linear forms 1;,1s, ...15. Secondly, there
is a one-to-one correspondence between the solution set
and the algebraic object

(L, ... 1) = {Zﬁjlj} (9)

where §; are arbitrary scalar multipliers. This algebraic
object consists of all possible linear combinations of the
constraints 1;. Stated another way, it is not the particular
set of equations that is important, we are free to change
the specific set of defining equations. In particular, we
can find a simple representation from which we can derive
information about the solution set. These 1deas form the
basis for Gaussian elimination, LU decomposition, and
the singular value decomposition (SVD) (Golub and Van
Loan 1989).

Algebraic structure: Polynomial ideals

Now consider the situation when the equations are not
linear. Rather, we have a system of algebraic equations,
polynomial equations in n variables. A polynomial in n
variables, x = (21, ..., 2y), is a sum (Cox et al. 1997, p.

2)

pi= > aaix - d; (10)

(a4

where the sum is over a set of integer index vectors
a = (a1, ...,a,), the coefficients a,’ are real or complex
numbers, and

X% =%

cxp . (11)
The set of all polynomialsin zq, ..., x, with coefficients in
the field of complex numbers C is denoted Clz1, ..., z,].
An algebraic equation results when we set the polynomial
pP: equal to zero.

In dealing with algebraic equations we can follow a pro-
cedure much like that used in treating a linear system of
equations. In order to do this it is necessary to define an
appropriate mathematical structure, that is, an algebraic
quantity that can be directly related to the zero set of a
system of algebraic equations [affine variety]. The par-
ticular algebraic structure is similar in form to the linear

sum (9).

Definition For a set of polynomials p1,ps,...,py the
tdeal is defined as

(P1, .- PN) = {Zﬁipz} (12)

where (3; are arbitrary polynomials.

Note that the multipliers 3; are arbitrary polynomials
rather than simple scalars. Thus, an ideal consists of
all polynomials generated by the basis set p1,ps, ..., PN-
All the elements of the ideal vanish on the zero set of the
defining equations.

The importance of the 1deal associated with a set of
algebraic equations derives from its unique relationship
with the zero set of the equations. That is, it we ac-
count for multiplicities, there is a one-to-one relation-
ship between the ideal of a set of algebraic equations,
(P1, .-, PN}, and the zero set of the polynomials (Cox et
al. 1997). The multiplicities arise because the zero set
for the power of a polynomial is identical to the zero set
of the polynomial itself.

The value of Algebraic Structure:

At this juncture I can now outline, in an intuitive fash-
ion, the primary idea underlying an algebraic approach
to the study of inverse problems. The solution set forms
a geometrical object [Affine Variety] defined by the van-
ishing of a set of polynomials

pP1 = Zaalxa —d;

(a4

P2 = Zaazxa —ds

(a4

(13)

PN = Z agNx® —dy

o

To this solution set there corresponds an algebraic object,
the associated 1deal,

<p1,...,pN> = {Zﬂlpl} (14)

As in the case of the linear system of equations, we are
not constrained to one specific form of defining equations.
Rather, we are free to modify the defining equations as
long as the ideal is preserved. For example, as pointed
out by Morgan (1987), one is free to multiply an equa-
tion by a scalear and add it to another equation. Using
this generalized form of row reduction, one can examine
properties such as the number of solutions at infinity.
In a relatively recent development Buchberger (1985)
produced a basis set, the Grobner basis, with many useful
properties. The primary computational advantage of a
Grobner basis is that it allows one to extend polynomial
division to division by a set of polynomials. In particular,
when the polynomials are elements of a Grobner basis,



the remainder upon division is unique (Cox et al. 1997,
p. 79). Though this may seem like a modest accomplish-
ment, the consequences of this are far reaching.
Grobner basis calculations now form the core of many
algorithms in computational algebra (Adams and Lous-
taunau 1994, Eisenbud 1995, p. 321, Cox et al. 1997, Cox
et al. 1998). In particular, they may be used to examine
the existence of a solution to a set of algebraic equations.
If the unit element, 1, is an element of the Grobner basis
than the equations are inconsistent and no solution exists
(Cox et al. 1997). Furthermore, Grobner basis computa-
tions allow one to perform something akin to the triangu-
larization of a set of algebraic equations (Cox et al. 1997).
That is, using this basis set I may derive a ‘triangular’
set of polynomial equations in which the final equations
are in the fewest number of variables (Adams and Lous-
taunau 1994). In the optimal case the final equation is
a polynomial equation in a single variable, say z,. This
equation is solved for all values of z,, and these values are
successively back-substituted into the previous equation,
which is solved for z,,_1, and so on. Thus, one may ex-
tend the approach used for linear systems of equations to
simplify a system of algebraic equations. Grobner basis
calculations may also be used to compute the dimension
of the zero set of a system of algebraic equations. In
the event that the solution set has a dimension of zero,
is a collection of isolated points, one can compute the
number of solutions to the equations. Finally, there are
Grobner basis algorithms for finding all of the solutions
for a system of algebraic equations (Cox et al. 1997, Cox
et al. 1998). Such algorithms complement existing meth-
ods based upon polynomial continuation (Morgan 1987,
Watson and Morgan 1992, Verschelde et al. 1994) and
resultants (Manocha 1998, Emiris and Canny 1995).

CONCLUSIONS

When discretized, many non-linear geophysical inverse
problems take the form of algebraic (polynomial) equa-
tions. A mathematical framework, based upon poly-
nomial ideals, is available for treating such equations.
The approach extends ideas used in solving linear inverse
problems, such as Gaussian elimination, to nonlinear in-
verse problems. Thus, the framework unifies both linear
and non-linear inverse problems. As such, it provides a
useful vantage point from which to view many geophys-
ical inverse problems. From this vantage point we gain
insight into some of the issues pertaining to non-linear
inverse problems. That is, we can examine questions of
existence, uniqueness, and the computability of solutions
to the inverse problems. Furthermore, there are a wealth
of methods from computational algebra which may be of
value in treating non-linear inverse problems.

One recent development in computational algebra,
Grobner basis computations, has been the subject of con-
siderable interest (Adams and Loustaunau 1994, Cox et

al. 1997, 1998). At present Grobner basis calculations
are computationally intensive and are practical for rather
small systems of equations. Future needs in the area of
Grobner basis algorithms involve the practical implemen-
tation and application of these techniques. The software
implementation of Grobner basis algorithms has been pri-
marily linked with mathematical research. Issues such as
computational efficiency and stability may garner greater
attention in the future.

Computational algebra is a relatively young field and
there are many open questions and avenues to explore.
Already, there are a wealth of methods for treating sys-
tems of algebraic equations (Cox et al. 1998, Sturm-
fels 2002). These include earlier homotopy algorithms
(Morgan 1987) and more recent sparse polynomial vari-
ants (Verschelde et al. 1994). In addition, there are
algorithms based upon resultants (Manocha 1998) and
sparse resultants (Emiris and Canny 1995). The quesion
of real solutions to algebraic equations is a topic of in-
terest in solving inverse problems. This is a relatively
unexplored area but there are algorithms for counting
the number of real solutions (Pederson et al. 1993). The
field of semidefinite programming (Stengle 1974, Vanden-
berghe and Boyd 1996) provides a means to verify the
existence of a real solution to a system of algebraic equa-
tions (Sturmfels 2002). There is the question of extend-
ing these ideas to an infinite dimensional setting which
has not yet been explored. Such an extension might in-
volve exploring the properties of multilinear mappings in
Banach spaces (Abraham et al. 1983).
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